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ABSTRACT
We present LittleTable, a relational database that Cisco Mer-
aki has used since 2008 to store usage statistics, event logs,
and other time-series data from our customers’ devices.

LittleTable optimizes for time-series data by clustering ta-
bles in two dimensions. By partitioning rows by timestamp,
it allows quick retrieval of recent measurements without im-
posing any penalty for retaining older history. By further
sorting within each partition by a hierarchically-delineated
key, LittleTable allows developers to optimize each table for
the specific patterns with which they intend to access it.

LittleTable further optimizes for time-series data by cap-
italizing on the reduced consistency and durability needs of
our applications, three of which we present here. In partic-
ular, our applications are single-writer and append-only. At
most one process inserts a given type of data collected from
a given device, and applications never update rows written
in the past, simplifying both lock management and crash
recovery. Our most recently written data is also recoverable,
as it can generally be re-read from the devices themselves,
allowing LittleTable to safely lose some amount of recently-
written data in the event of a crash.

As a result of these optimizations, LittleTable is fast and
efficient, even on a single processor and spinning disk. Query-
ing an uncached table of 128-byte rows, it returns the first
matching row in 31 ms, and it returns 500,000 rows/second
thereafter, approximately 50% of the throughput of the disk
itself. Today Meraki stores 320 TB of data across several
hundred LittleTable servers system-wide.

1. INTRODUCTION
We live in an age of Internet-connected devices. At Cisco

Meraki we produce enterprise-class wireless access points,
switches, firewalls, VOIP phones, and security cameras, all
of which customers configure and monitor almost exclusively
via our website, which we call Dashboard. In the consumer
space the variety of devices is even greater. The authors
of this paper, for example, own Internet-connected smoke
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alarms, baby monitors, pedometers, and thermostats, which
we likewise configure and monitor over the Internet.

Within the management applications for these Internet-
connected devices there exists a common need to store time-
series data—such as packet counters, security events, carbon
monoxide levels, or step counts—and retrieve it quickly for
customers to view in graphs, tables, and other visualizations.
In our experience, customers have a near-limitless appetite
for such data. Although most requests cover only summaries
of recent data—e.g., bytes transferred per client in the last
hour or a monthly ranking of the top network applications
observed—customers also use Dashboard and applications
like it for ad hoc exploration, root-cause analysis, and foren-
sics. They thus place substantial value in the ability to look
further back in time and drill down into greater detail.

This insatiable demand for high-resolution historical data
motivates applications like Dashboard to minimize costs by
using inexpensive, high-volume spinning storage. All else
being equal, more storage is always better, and solid state
drives are still significantly more expensive per byte than
spinning ones. At the same time, customers digging into
their data expect web pages to load in a few seconds or less,
and increased data resolution or retention duration should
not dramatically affect interactivity.

In this paper we present LittleTable, a relational database
optimized for time-series data that has been in production
use at Meraki since early 2008. A key insight behind Little-
Table’s design is that time-series data admits a natural clus-
tering by a combination of timestamp and a hierarchically-
delineated key. For example, Dashboard organizes wireless
access points into groups called networks, and it tracks bytes
transferred per device in a table keyed by network and de-
vice identifier. LittleTable clusters this table such that any
rectangle defined by a continuous range of the key space over
a continuous range of time is likely to be contiguous on disk,
as shown in Figure 1. Dashboard can thus efficiently render
multiple visualizations from the same table. For example,
it can display a graph of the total bytes transferred by all
devices in a network in the last week or a graph of the bytes
transferred by a specific device in the first two hours of last
Monday. Both queries are efficient in two senses: they read
the requested data from a mostly contiguous area of disk,
minimizing seek latency, and they avoid reading unrelated
data in the process, minimizing pressure on the page cache.
As a consequence, retaining infrequently-read data does not
affect the access performance of data queried more often.

A second key insight behind LittleTable’s design is that
time-series data used by Dashboard allows for much weaker
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Figure 1: Two-dimensional clustering. LittleTable
clusters data so that any rectangle defined by a continuous
range of the hierarchically ordered key space over a contin-
uous range of time is likely to be contiguous on disk.

consistency and durability guarantees than those commonly
provided by relational databases, simplifying locking and
crash recovery while improving performance. In particular,
time-series data in Dashboard is single-writer, append-only,
and recoverable. At most one process per device inserts any
given metric into LittleTable, and data gathered from dif-
ferent devices are independent. There is no need to update
rows, as each row represents a measurement taken at a spe-
cific point in time. Instead, LittleTable merely ages data out
after a configurable time-to-live. Finally, any data recently
inserted into LittleTable can generally be re-read from the
devices themselves. LittleTable can thus safely lose some
amount of recently-written data in the event of a crash.

Although working with LittleTable’s weaker consistency
and durability guarantees and thinking about data cluster-
ing a priori impose additional effort on developers, most
LittleTable applications follow one of a few common use
patterns, and we illustrate LittleTable’s utility by present-
ing three representative applications. One example fetches
byte and packet counters from devices and stores them into
LittleTable so that Dashboard can display graphs of trans-
fers per network, client, interface, and destination. Another
example pulls and stores logs of events such as wireless asso-
ciations and disassociations for Dashboard users to browse or
search. In the 9 years since LittleTable entered production
use, Meraki developers have added 68 additional applica-
tions, including the third we present here, which fetches and
stores motion vectors from security camera video streams so
that users can search for motion in subsections of a camera’s
field of view. We thus suspect that LittleTable will accom-
modate a wide variety of similar applications that require
high performance storage and retrieval of time-series data.

In return for this additional developer effort, LittleTable
is fast and efficient, even on inexpensive spinning storage.
Our microbenchmarks show that when querying a table of
128-byte rows and using only a single processor and disk,
LittleTable returns the first matching row in 31 ms, and it re-
turns 500,000 rows/second thereafter, approximately 50% of
the disk’s peak throughput. Inserts are also efficient: Little-
Table accepts batches of 512 128-byte rows—common in our
application—at 42% of the disk’s peak throughput.

In this paper we make the following contributions. We
present the design, implementation, and limitations of a re-
lational database optimized for time-series data. We demon-
strate via microbenchmarks the performance and efficiency

of our design, and we present several applications of Little-
Table and discuss how they work within the limitations of its
semantics. Throughout, we present lessons we have learned
since placing LittleTable into production use.

This paper is organized as follows. Section 2 places Little-
Table in context by describing Dashboard in more detail.
Sections 3–5 present LittleTable itself, its applications, and
its performance in microbenchmarks and production use.
Section 6 presents related work, and Section 7 concludes.

2. DASHBOARD OVERVIEW
In this section we place LittleTable in context and moti-

vate its design by describing the architecture of the Meraki
system as a whole.

2.1 Shards
Dashboard is implemented as a collection of mostly in-

dependent servers called shards, each of which implements
the entirety of Dashboard’s functionality for some subset
of Meraki’s customers and their devices. Most shards host
several hundred Meraki customers. Our largest shards each
host over 30,000 Meraki devices and support over two mil-
lion network clients per day. For geographic proximity and
legal reasons such as data sovereignty, we group shards by re-
gion—e.g., North America, Europe, etc. Customers choose
their region when they first create their Dashboard accounts.

Meraki’s devices communicate with their hosting shard
through a proprietary virtual private network, called mtun-
nel, that secures their communication and allows the shard
to initiate communication with devices even when they have
no publicly-routeable IP address. The shard stores devices’
configurations in PostgreSQL, and devices fetch their con-
figurations over mtunnel. Daemon processes on the shard,
called grabbers, periodically fetch time-series data from de-
vices over mtunnel and store them in LittleTable. The Dash-
board webapp runs directly on the shards, and our cus-
tomers connect to it over TLS to view these statistics or
reconfigure their devices.

Dashboard maintains a mapping of customers and devices
to their respective shards. When a customer first logs into
dashboard.meraki.com, it sends them via HTTP redirect to
the shard that hosts their data, and from then on the cus-
tomer interacts directly with that shard. A similar mecha-
nism redirects devices to the correct shard upon initial boot.

2.2 Fault Tolerance and Load Balancing
To protect against data loss, every shard has a warm spare,

hosted on equally capable hardware in the same region, but
managed by a different provider in a different datacenter in a
different city. Dashboard uses PostgreSQL’s built-in contin-
uous archiving functionality to keep the spare’s PostgreSQL
instance consistent by replaying the shard’s write-ahead log
on the spare. To allow recovery in the case of programming
or operational errors, each spare also takes hourly backups
that it stores locally. Finally, to protect against simultane-
ous failure of the multiple replicated drives on both shard
and spare, every night the spare signs and encrypts a backup
of each database and stores it in Amazon S3.

When a shard fails or becomes unreachable due to a net-
work partition, Meraki’s operations team initiates an auto-
mated failover sequence that brings the spare out of continu-
ous archival mode and redirects traffic to it by updating DNS
records. Once initiated, this process takes only a minute
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or two, including the DNS cache TTL. During failover, cus-
tomers cannot view or reconfigure their networks, but except
for a few specific features (e.g., splash pages, packet traces),
Meraki’s devices tolerate temporary losses of connectivity to
Dashboard without incident.

Although shards experience some variation in load due to
the mix of device types they host and the features their cus-
tomers have enabled, as well as diurnal and other regular
variations, the primary determinant of a shard’s load is the
number of Meraki devices it hosts. Consequently, a shard’s
load tends to change slowly, as it takes time for customers
to physically install additional devices. In contrast, quick
changes in load are usually a result of code changes or oper-
ational errors that should be investigated before being acted
upon. Meraki’s operations team thus balances load among
shards manually. To keep Dashboard responsive, the team
splits overloaded shards by mapping roughly half of their
customers to each of two new child shards. To maintain
high resource utilization, the operations team assigns new
customers to underloaded shards during customer sign-up.

2.3 Design Considerations
Based on the existing Dashboard architecture and our in-

tended use cases for LittleTable, we now outline the con-
siderations that guided our design. Section 3 describes the
design itself and how it meets these considerations.

2.3.1 Horizontal Scalability
At the time that we began building LittleTable, in early

2008, the size of our existing codebase, its reliance on Post-
greSQL, and the lack of mature alternatives for storing con-
figuration data all led us to scale out Dashboard via manu-
ally partitioning users’ data onto independent shards. Dash-
board’s architecture required that LittleTable support con-
tinuous archiving, but there was never any requirement for
LittleTable itself to partition data across servers.

Although Meraki’s business has grown substantially since
2008, the processing power, memory, and storage per server
has grown as well, and today only a select few Meraki cus-
tomers have so many devices that Dashboard distributes
their data across multiple shards. In the few places Dash-
board shows a rollup of such customers’ LittleTable data,
one of the involved shards pulls data from the others and ag-
gregates it before forwarding the result to the client. A more
distributed database would simplify implementing such pages,
but would likely introduce performance and operational chal-
lenges of its own.

2.3.2 SQL Support
Another consequence of Meraki’s pre-existing use of Post-

greSQL that initially surprised us was the importance of an
SQL interface to LittleTable. Our first implementation of
LittleTable had an XML-based query language, and devel-
oper uptake was sluggish until a subsequent version added
SQL support. While alternative data models and their as-
sociated query languages—e.g., graph databases [7], multi-
dimensional sparse maps [8, 14], etc.—are quite popular to-
day, using a well-understood and commonly-known query
language was extremely valuable to our developers.

2.3.3 Insatiable Storage Requirements
It is almost impossible to store too much time-series data.

There is always some customer who wishes they had more

history or higher resolution. At the time we built Little-
Table, this consideration definitively ruled out solid state
drives. Even today, spinning storage remains significantly
less expensive per byte, although the gap continues to close.

To achieve high performance on spinning disks, Little-
Table must cluster data such that it can retrieve the rows
for any given graph or table from a mostly contiguous area
of disk, and there are two dimensions along which such clus-
tering can be fruitful. First, we observe that customers most
frequently visit Dashboard in order to view relatively recent
data about their networks—to debug a client’s current con-
nectivity issues, for example, or to generate a monthly sum-
mary of network usage. This insight implies that LittleTable
should cluster data by timestamp, so that recent data is not
interleaved with data from the distant past. Second, most
views in Dashboard display data for only a subset of the de-
vices hosted on the relevant shard—usually a single device,
network, or customer—and these categories nest: devices
belong to networks that belong to customers. This insight
implies that LittleTable should also cluster data according
to some organizational hierarchy. It should not interleave
one customer’s, network’s, or device’s data with another’s.

2.3.4 Weaker Consistency and Durability
By design, the time-series data Dashboard stores in Little-

Table requires relatively weak consistency and durability
guarantees. At most one Dashboard process collects and
inserts each type of data for any given device, and that
process manages any relationship between a single device’s
rows (e.g., computed differences in the value of an increas-
ing counter), so there is no need for reader-writer consis-
tency within tables. Measurements of different metrics are
generally independent of each other, so there is little need
for consistency across tables. Because each row represents a
measurement of state at a particular time, and Dashboard
only deletes rows by aging them out after a configurable
interval, there is no need to update rows once written. Fi-
nally, data written within the past few minutes is largely re-
coverable: in the event of a database crash, Dashboard can
generally re-collect such data from the devices themselves.

These weaker semantics are in contrast with the stronger
requirements on the configuration data Dashboard stores in
PostgreSQL. Updating a configuration may require modify-
ing multiple tables atomically, and updates may occur con-
currently, as many users interact with Dashboard at any
given time. Database backups must reflect a consistent view
across tables. Atomicity, consistency, isolation, and durabil-
ity are all vitally important for configuration data.

3. LITTLE TABLE
In this section we present LittleTable’s data model and

API, its basic architecture, and a number of challenges we
had to overcome in designing and implementing it.

3.1 Data Model and API
LittleTable is a relational database, run as an independent

server process. Clients interact with LittleTable by loading
a custom adaptor into SQLite’s virtual table interface [4],
allowing them to perform inserts, queries, aggregates, and
other operations in SQL. Internally, the adaptor commu-
nicates with the server over TCP to get a list of available
tables, determine the schema and sort order of each table,
and perform inserts or queries.
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The schema of a table in LittleTable consists of a set of
columns, each of which has a name, type, and default value.
An ordered subset of these columns form the table’s primary
key. The final column in this subset must be of type times-
tamp and named “ts”. Although other columns may also be
of type timestamp, we hereafter refer to this column as the
timestamp column. LittleTable enforces the uniqueness of
primary keys, and the server always returns query results to
SQLite in ascending or descending order by primary key.

LittleTable clusters data by timestamp and sorts data by
primary key within each cluster. Applications choose their
primary keys carefully to control storage layout. The pri-
mary key in Figure 1, for example, is (network, device, ts).

The SQLite adaptor takes clients’ inserts and transmits
them to the LittleTable server in batches. Each inserted
row’s timestamp may be in the past or in the future. A
client may also omit a row’s timestamp entirely, in which
case the server sets it to the current time.

LittleTable does not provide any way for clients to de-
termine whether their inserts have reached stable storage.
It guarantees only that if it retains a particular row after
a crash, it will also retain all rows that were inserted into
the same table prior to that row. Note that this guarantee is
made relative to rows’ insertion order, not their timestamps.
The SQLite adaptor maintains a persistent TCP connection
to the server in order to detect server crashes. After a dis-
connection, clients issue queries to determine which rows, if
any, to re-insert (see Section 4.1).

The SQLite adaptor takes clients’ queries and works with
the LittleTable server to execute them. On the server side,
every query in LittleTable is an ordered scan of rows within
a two-dimensional bounding box of timestamps in one di-
mension and primary keys or prefixes thereof in the other.
These bounds may be inclusive or exclusive. In response
to a query, the server returns all rows that lie within the
specified bounds, sorted by primary key.

Continuing the example from Figure 1, consider a query
that requests the sum of bytes transferred from each device
in a network N over the last week. The SQLite adaptor
will request from LittleTable all rows whose primary keys
begin with network N and whose timestamps are in the last
week. Having loaded the table’s schema on initialization,
the SQLite adaptor will know that the resulting data will
be sorted by device identifier, and it can thus perform the
aggregation without resorting the data.

LittleTable provides no guarantees as to whether a query
that executes concurrently with an insert will return any of
the inserted rows. It may return some, all, or none of them.
In the absence of an intervening server crash, however, a
query that starts after an insert completes will always return
all of the insert’s rows that fall within the query’s bounds.

Tables in LittleTable have a set time-to-live (TTL) period,
and LittleTable discards rows whose timestamps fall more
than a TTL in the past. This age-based expiration of rows
is currently the only form of deletion in LittleTable.

3.2 Design Overview
LittleTable implements each table as a union of sub-tables,

called tablets, of two types.1 It places newly inserted rows

1We apologize that this terminology is confusing to readers
familiar with the related work. What LittleTable calls in-
memory or on-disk tablets, Bigtable and related systems call
memtables or SSTables. Bigtable uses “tablet” to refer to a

into an in-memory tablet, implemented as a balanced binary
tree. When an in-memory tablet reaches a configurable max-
imum size or age, LittleTable marks it as read-only, adds it
to a list of tablets to flush to disk, and allocates another
in-memory tablet to receive new rows.

Once flushed to disk, a tablet becomes an on-disk tablet.
LittleTable writes an on-disk tablet as a sequence of rows
sorted by their primary keys and grouped into 64 kB blocks.
It also writes to disk an index for each tablet that records
the last key in each of the tablet’s blocks. On average, these
indexes are only 0.5% of their tablets’ sizes, so LittleTable
caches them almost indefinitely in main memory.

LittleTable caches the range of timestamps each tablet
contains, which we call a tablet’s timespan, and it writes
the list of on-disk tablets and their timespans to a table
descriptor file after every change. Once written, LittleTable
atomically renames this file to replace the previous version.

To execute a query, LittleTable selects the set of tablets
whose timespans overlap the query’s timestamp bounds. It
traverses each in-memory tablet’s binary tree to find the
first key within the query’s key bounds. It performs a sim-
ilar lookup in each on-disk tablet by binary search within
the tablet’s index to find the relevant block, and another bi-
nary search within that block to find the relevant row. Using
these starting points, LittleTable opens a cursor on each tab-
let, filters any rows that fall outside the query’s timestamp
bounds (which generally do not align exactly with the tab-
lets’ timespans), and merge-sorts the resulting streams to
form a single result stream ordered by primary key.

3.3 Initial Analysis
Based on the above overview, we now briefly itemize the

benefits of LittleTable’s design. Assume for the purposes
of exposition that all clients let LittleTable set the times-
tamps on their rows to the current time, and that times-
tamps have infinite precision. We remove these assumptions
about timestamps in Section 3.4.3.

First, note that rather than writing individual disk blocks,
LittleTable flushes entire in-memory tablets to disk at once.
Based on the average seek time and sequential throughput
we observe on our disks (see Section 5.1.1), we set the default
flush size to 16 MB, which is large enough to sustain roughly
95% of the disk’s peak write rate.

Second, by placing rows into only a single in-memory tab-
let as it receives them, LittleTable clusters rows by times-
tamp. By sorting the rows within each tablet by primary
key, LittleTable further clusters them by key. When per-
forming a query that covers only a small time range, Little-
Table reads from a correspondingly small fraction of tab-
lets, and it uses each tablet’s index to start reading at the
block corresponding to the query’s minimum key bound. As
with inserts, reading from each tablet into sufficiently large
buffers ensures that LittleTable sustains a high fraction of
the disk’s peak throughput.

Third, with appropriately-chosen primary keys, LittleTable
clusters a single table for a variety of applications. In the
example from Figure 1, both the rows corresponding to a
particular network and those corresponding to a particular
device within a network are contiguous within their tablets.

Finally, a background process in LittleTable efficiently re-

partition of rows assigned to a particular server. For brevity
of exposition, we delay further discussion of related work
until Section 6.
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claims disk space by first removing from the table descriptor
and then deleting from the file system any tablet whose rows
have all passed their TTL. Because some rows in a tablet
may expire before others, the server also filters expired rows
from query results.

3.4 Challenges
We now discuss some challenges with the LittleTable de-

sign as we have described it so far, as well as how we extend
the design to handle them.

3.4.1 Merging Tablets
To limit the number of rows it will lose in a crash, Little-

Table by default flushes an in-memory tablet no longer than
10-minutes after it first adds a row to the tablet.

While this approach provides acceptable durability for our
applications, it creates a problem for queries. Consider an
application that draws graphs over one-week time periods.
To read the relevant data for this application, LittleTable
must open a cursor on every tablet whose timespan overlaps
the week in question. To do so, it must at a minimum read
one block from each tablet, and because they are stored in
separate files, this likely implies a disk seek for every tablet.
As there are over one thousand 10-minute periods in a week,
and a modern disk averages around 8 ms per seek, this query
would take 8 seconds just to return its first row.

The problem does not end with the first row, either. To
make efficient use of the disk’s peak throughput, LittleTable
must read in long runs. A modern disk reads sequentially
at around 120 MB/s, so to spend at most half of its time
seeking, LittleTable must read about 1 MB at a time. A
query that reads from 1,000 tablets would thus need around
1 GB of buffer space to execute efficiently.

LittleTable could reduce the number of tablets a query
needs to read from by flushing data less often, but doing so
requires more memory to hold in-memory tablets as it fills
them and risks losing even more data in the event of a crash.

Instead, a background process within LittleTable period-
ically merges two or more existing on-disk tablets. Little-
Table performs such merges efficiently in a single pass by
merge-sorting the input tablets and writing the results to
disk as a new tablet. Afterwards it rewrites the tablet de-
scriptor file and removes the source tablets from disk.

While merging reduces the number of tablets a query must
read, when performed indiscriminately it can dramatically
increase the write load on the disk. If, for example, Little-
Table merged tablets so as to maintain only a single, large
tablet, it would end up rewriting all of the existing rows of a
table every time it merged in a newly flushed on-disk tablet.

To merge tablets efficiently, LittleTable instead orders tab-
lets by their timespans’ lower bounds and merges the oldest
adjacent pair such that the newer one is at least half the
size of the older. It includes in this merge any newer tab-
lets adjacent to this pair, up to a maximum tablet size. By
merging only adjacent tablets, this approach does not affect
the disjointness of tablets’ timespans. In the appendix we
further prove this process is efficient in that both the number
of tablets that remain when no more tablets can be merged
and the number of times any one row is rewritten to disk
are logarithmic in the total number of rows they contain.

3.4.2 Application-Driven Timespans
By keeping the number of tablets small via merging, Little-

Table prevents query execution from being dominated by
seek time. There is, however, a cost to having too few tab-
lets. Consider a query over a particular day. If the relevant
rows were stored in a single tablet whose timespan covered
a year, in executing this query LittleTable might scan 365
times more rows than it returned to the client.

Anecdotally, most queries ask for anthropocentric ranges
of time: an hour, a day, a week. These periods also generally
increase as one looks further back in time: a network oper-
ator debugging a connection problem usually looks only at
the most recent hour or two, whereas a CIO might at year’s
end draw up monthly summaries of network usage.

Following this intuition, LittleTable groups time into three
ranges, each measured in even intervals from the Unix epoch:
the six 4-hour periods of the most recent day, the seven days
of the most recent week, and all the weeks previous to that.
It inserts only rows from the same period into any one in-
memory tablet, and it will not merge tablets from different
periods. To prevent this policy from producing a surge of
merge activity as the tablets from a smaller period roll over
into the next largest one, LittleTable spreads the merge load
across tables by delaying each merge by a pseudorandom
fraction of the larger period.

We can thus further bound the number of seeks required
to return the initial row from a query, as well as the amount
of buffer space the query needs to make efficient use of the
disk, by noting that the number of tablets per time period
covered by the query will be logarithmic in the number of
rows in that period. In practice, most tables in our system
contain half a dozen or so tablets per period.

This heuristic is not perfect, but it works well in practice.
As we discuss in Section 5.2.4, the average ratio of rows
scanned versus rows returned for most of our production
tables is less than 1.4.

3.4.3 Timestamps Other Than Now
For various reasons, a number of LittleTable applications

insert rows with timestamps other than the current time. In
a typical example that we discuss further in Section 4.2, a
grabber fetches events such as DHCP leases from devices and
inserts them into LittleTable with timestamps marking the
time at which the events occurred on the device. If a device
is disconnected from Dashboard for an extended period, the
resulting timestamps may be arbitrarily far in the past.

In LittleTable’s design as we have described it so far, al-
lowing inserted rows to have timestamps other than the cur-
rent time threatens the disjointness of the receiving tablets’
timespans and, consequently, the clustering of data by time.
To keep tablets’ timespans mostly disjoint in the presence
of such inserts, LittleTable fills several in-memory tablets at
once. It bins rows into these tablets using the same time
periods it uses to limit merging: there is one filling tablet
for each four-hour period in the most recent day, one for
each day in the current week, etc. While this approach can
produce tablets with overlap, they end up adjacent when
ordered by their lower time bounds, and thus they are often
merged together with others of similar timespans.

Adding rows to more than one filling tablet at a time com-
plicates flush ordering, since LittleTable guarantees that if
it retains a row inserted prior to a crash, it will also re-
tain all rows inserted prior to that row on the same table.
When filling only a single in-memory tablet at a time, pro-
viding this guarantee is straightforward: LittleTable need
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only flush tablets in the order they were filled. With more
than one, particularly in the case of applications that insert
out of order like the application described above, the rows a
client inserts may interleave between tablets.

To maintain its flush ordering guarantee with multiple
tablets, LittleTable tracks for each table the tablet t that
most recently received an insert. When it processes an in-
sert to a different tablet t′ 6= t, it adds a flush dependency
t → t′, meaning t must be flushed before t′. These depen-
dencies form a directed graph that may have cycles. Before
flushing a tablet t, either because t has reached its size or
age limit, LittleTable first traverses this dependency graph
to find the transitive closure of tablets that must be flushed
first. LittleTable flushes those dependencies that have not
already been flushed to disk along with t to form one new
on-disk tablet each, and it adds all of those on-disk tablets
to the tablet descriptor file in a single atomic update.

3.4.4 Enforcing the Uniqueness of Primary Keys
As discussed in Section 3.1, LittleTable guarantees the

uniqueness of primary keys. It enforces this guarantee by
looking for duplicates of each inserted key in existing tablets,
and in many cases it can do so without blocking on disk.
For example, it can confirm that a row’s timestamp is newer
than any other—and that its primary key is thus unique—
using only the table descriptor file. Many of our applications
insert rows with timestamps set to the current time, so this
case is quite common. LittleTable can also confirm that a
row has a larger primary key than any other in the same
time period using only the indexes of the tablets in that
period. This check is particularly beneficial for aggregators
(see Section 4.1.2), which by design insert the rows of each
aggregation period in ascending primary key order.

For all remaining inserts, LittleTable must perform a query
to determine if the row’s primary key is unique, and unlike
the two cases above, such queries may wait on disk to re-
trieve their results. To avoid holding a mutex during disk
reads, LittleTable instead implements a small in-memory
lock table that blocks other inserts to the same table while
allowing queries to continue unencumbered.

3.4.5 Finding the Latest Row for a Key Prefix
Dashboard applications occasionally need to find the lat-

est row in a table for some prefix of the primary key. Sec-
tion 4.2 describes one such example. Although such queries
contain no explicit timestamp bounds, LittleTable can still
take advantage the way that tablets partition a table by time
to avoid opening a cursor on all tablets simultaneously.

To find the latest row with key prefix k in a table, Little-
Table works backwards sequentially in timespan order through
each group of tablets whose timespans overlap. It opens on
each group a cursor that returns all rows with prefix k in
descending key order. If k contains all columns of the pri-
mary key except the timestamp, the first row returned by
this cursor is the latest with prefix k. Otherwise, because
the timestamp column is the last in the primary key, Little-
Table must scan through the rows returned by the cursor to
find the one with the latest timestamp. If the cursor returns
no rows at all, LittleTable moves on to the next group.

While this approach is correct, it is far from efficient. Be-
cause the latest row may occur arbitrarily far in the past, the
query might eventually open a cursor on every tablet in the
table. To further optimize for this case, we are considering

storing with each on-disk tablet a Bloom filter summariz-
ing the tablet’s keys, as in bLSM [22]. This change would
eliminate the need to check 99% of the tablets that do not
contain any matching key at a storage cost of only 10 bits
per row. These Bloom filters would also be useful to check
for duplicate keys during inserts, as described above.

3.5 Implementation Details
LittleTable is currently 20,672 lines of C++, including

comments, blank lines, and tests. It supports as column
types 32–bit and 64–bit integers, double precision floating
point numbers, timestamps, variable length strings, and byte
arrays (i.e., blobs). Unlike most SQL databases, it does not
support null values; few of our applications need them, and
those that do instead use sentinel values (e.g., –1).

LittleTable stores the indexes for on-disk tablets as a footer
within the same file as the tablet’s rows and reloads them
into memory on demand after a restart. It compresses the
footer and the tablet’s blocks with LZO1X-1 [2], and it uses
the final two words of the file to store the footer’s decom-
pressed size and its offset within the file. Linux’s ext4 file
system will usually store tablets of 1 GB or less in a single
extent. It thus takes three seeks to read a tablet’s footer:
one to read the inode, one to read the footer’s offset from
the end of the file, and one to read the footer itself.

Our implementation supports only a few schema manipu-
lations. Clients can append columns to the tail of a table’s
schema, increase the precision of 32–bit integer columns to
64 bits, and alter a table’s TTL. They can also drop a ta-
ble and recreate it with a new schema, an approach we use
frequently during new feature development.

To implement schema changes, LittleTable stores each
tablet’s schema in the tablet’s footer, and it stores a table’s
current schema in its table descriptor file. When reading
from a tablet with a previous schema version, LittleTable
translates its rows to the latest version, extending the pre-
cision of cells or filling them in with the default values from
the table schema as necessary. In this way schema changes
impose a small CPU cost on queries, but they do not require
rewriting any existing on-disk tablets.

LittleTable allows clients to specify a query direction—
ascending or descending—and a limit on the number of rows
to return. Internally, the server enforces its own limit on the
number of rows it will return and sets a more-available flag
in any query result that hits this limit. The SQLite adaptor
retrieves additional rows up to any client-requested limit by
updating the starting key bound in a query to the key of the
last row returned and re-submitting.

To implement continuous archival of LittleTable data, ev-
ery 10 minutes Dashboard runs rsync from shard to spare
repeatedly until a sync completes without copying any files,
indicating that shard and spare have identical contents. This
approach works because an rsync that copies no files is quick
relative to the rate of new tablets being written to disk.

4. APPLICATIONS
In this section we discuss three LittleTable applications,

all of which gather time-series data from Meraki devices,
store it in LittleTable, and display it in Dashboard. We
have simplified each application for brevity of exposition,
but we pay particular attention to the techniques they use
to handle LittleTable’s weak durability guarantees, as well
as how they handle temporary device unavailability due to
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problems with customers’ uplinks or the broader Internet.
Surprisingly, the strategies for overcoming these two chal-
lenges often compliment each other. Throughout this section
we assume that LittleTable returns query results at 500,000
rows/second. Section 5.1.5 presents the related benchmark.

4.1 Network Usage
As one would expect of a network monitoring applica-

tion, Dashboard provides customers with graphs of bytes
and packets transferred per network, device, and client. Less
typical is that it also provides graphs of transfers per net-
work application: by port number (e.g., port 22 for ssh),
by hostname (e.g., meraki.com), or by deep packet inspec-
tion (e.g., HTTP headers). Customers use these graphs to
monitor usage and to decide whether they should add traffic
shaping or firewall rules to their networks’ configurations.

4.1.1 Usage Retrieval and Storage
UsageGrabber is a daemon process within Dashboard that

periodically fetches counts of bytes and packets per client
and application from Meraki devices and stores them in
LittleTable for Dashboard to display. For brevity of exposi-
tion, we present here a simplified version of UsageGrabber
that fetches only byte counters for a single network interface
per device. Extending this design to handle multiple clients
and applications per device is tedious, but straightforward.

Every minute UsageGrabber fetches from each device D
in network N a 64-bit count of the number of bytes the
device has transferred, and it keeps an in-memory cache of
the previous time t1 and count c1 it fetched from each device.
UsageGrabber does not insert any row into LittleTable for
the very first response it receives from a device, but when
it fetches a subsequent count c2 at time t2, it calculates an
average transfer rate of r = (c2 − c1)/(t2 − t1) and stores in
LittleTable the key (N,D, t2) and value (t1, c2, r), indicating
that the device transferred at rate r over the interval [t1, t2).
Note that because this table is keyed on both network and
device, Dashboard can efficiently load the data for either an
entire network or a single device within that network.

After a temporary loss of connectivity to a device, Us-
ageGrabber handles the device’s next response differently
according to the duration of its unavailability. If the un-
availability was short—e.g., several minutes—UsageGrabber
proceeds as normal. If the unavailability continues for hours,
on the other hand, it feels disingenuous to show that the
device maintained a steady rate of transfer over the entire
period. Instead, if t2 − t1 exceeds some threshold T , Us-
ageGrabber caches t2 and c2 in memory but does not insert
any row in LittleTable, and Dashboard users observe a gap
in usage for this period. The optimal value of T is subject
to taste; Dashboard sets T to an hour.

UsageGrabber reuses the threshold T to compensate for
LittleTable’s weak durability guarantees. Note that Usage-
Grabber’s behavior on receiving a response from a device af-
ter a period of unavailability longer than T is identical to its
behavior after receiving a response from that device for the
very first time. As such, UsageGrabber can remove from its
in-memory cache the entry for any device with which it last
communicated further than T in the past. Similarly, after a
LittleTable crash UsageGrabber can rebuild its in-memory
cache by querying LittleTable for the maximum timestamp
and associated counter value for each device from the current
time minus T forward. Assuming 30,000 devices per shard,

one row per device per minute, and a threshold T = 1 hour,
this query takes under four seconds.

We now consider the properties of UsageGrabber using the
terminology from Section 2.3.4. The rows that UsageGrab-
ber inserts into LittleTable are append-only. If necessary
for performance, UsageGrabber can be multithreaded, but
any given device can be handled by a single thread, so for
each device there exists a single writer. Finally, usage data
is recoverable. After a LittleTable crash, UsageGrabber can
rebuild its in-memory cache and resume fetching counter
values from devices in four seconds. A LittleTable crash
thus appears to customers in Dashboard as no more than
temporary unreachability of their devices, and the less data
LittleTable drops in the crash, the shorter this period of un-
reachability appears. So long as LittleTable’s data losses are
shorter and less frequent than Internet connectivity prob-
lems, customers are unlikely to notice such crashes at all.

4.1.2 Aggregation and Rollups
Recall from above that UsageGrabber stores one sample

per device per minute. If Dashboard were to render a graph
of cumulative bytes transferred on a network of 100 devices
over the last month, it would read over four million rows
from the source table. This read would take an estimated 8
seconds, a long delay for a web page. Furthermore, there is
little reason to transfer so many points to a web browser that
will use them to draw a graph only a few thousand pixels
wide. Instead, background processes within Dashboard ag-
gregate this source table to a new table of cumulative bytes
transferred per network over ten-minute periods. Render-
ing the same graph from this derived table yields only a few
thousand points, and it reduces resource usage across the
stack: from client-side CPU to server disk bandwidth.

We originally intended to build aggregation directly into
LittleTable, in the style of rrdtool [3], but we later real-
ized that by computing aggregates in a separate background
process, called an aggregator, we were able to iterate more
quickly on new aggregation schemes. For example, sev-
eral features within Dashboard track clients using Hyper-
LogLog [10], a fixed-size, probabilistic representation of a
set that permits unions and provides cardinality estimates
with bounded relative error.

Another unanticipated benefit of computing aggregates
in a separate process was the ability to join source data
from LittleTable with dimension tables from our configu-
ration data stored in PostgreSQL. For example, Dashboard
allows users to add tags—the meanings of which users define
for themselves—to clients, devices, and networks. A school
might tag its wireless access points with the tags “class-
rooms”, “playing-fields”, etc. An aggregator reads the tags
for each access point from PostgreSQL and writes a new ta-
ble of usage keyed on customer and tag, allowing Dashboard
to efficiently render graphs of usage per tag. Yet another ag-
gregator annotates client transfers with the likely operating
systems of those clients so that Dashboard can produce a
chart of usage per operating system.

In some cases, such as with the events logs discussed in the
next section, Dashboard allows customers to view the source
data of some table far into the past. Even when it does not,
however, we are in the habit of retaining source data for as
long as disk space allows, as it is hard to predict what aggre-
gates we might later want to compute when implementing
new features. By partitioning data by timestamp and auto-
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matically and inexpensively aging it out, LittleTable affords
us this flexibility at no cost except disk space.

We discuss above how UsageGrabber copes with Little-
Table’s weak durability guarantees. Aggregators illustrate
two additional ways that applications do so. First, because
LittleTable flushes rows to disk in insertion order, if an ag-
gregator can find any row from a particular aggregation pe-
riod in its destination table after a LittleTable crash, then
it knows that all prior aggregating periods are complete. At
that point, it can simply re-process the period for the row
it found and all subsequent periods. Unfortunately, Little-
Table provides no built-in, efficient way to find the most
recent row in a table. To compensate for this deficiency, ag-
gregators query their destination tables over exponentially
longer periods in the past until they find some row. They
then find the most recent row via binary search.

Second, aggregators must take care not to insert rows
derived from source data that might not yet be persisted
on disk. Because LittleTable currently provides no built-in
mechanism to accomplish this task, aggregators simply as-
sume that data written more than 20 minutes in the past
has reached disk. To remove this assumption, we are con-
sidering adding a new command to LittleTable that flushes
to disk all tablets with timestamps before a given value.

4.2 Event Logs
In addition to network usage, Dashboard also tracks de-

vices’ logs, which include events such as DHCP leases, wire-
less (dis-)associations, and 802.1X authentications. These
logs are particularly useful for diagnosing network connec-
tivity issues or performing forensic analysis. We present this
application because it demonstrates yet another way to work
around LittleTable’s weak durability guarantees—one that
has elements in common with those used by both Usage-
Grabber and the aggregators.

To implement event logs, a Meraki device assigns each
event a unique id from a monotonically increasing counter.
A daemon process within Dashboard, called EventsGrabber,
keeps an in-memory cache of the most recent event id, if any,
it has fetched from each device. It periodically connects to
each device and supplies this value, and the device replies
with any more recent events. EventsGrabber then inserts a
row for each event into LittleTable, with the network and
device as the key and the event id and contents as the value.

Like UsageGrabber, after a restart EventsGrabber must
rebuild its in-memory cache. It initiates this process by per-
forming a query over a fixed duration of recent rows, storing
the latest event id it finds for any device. If a device has
been unreachable from Dashboard or powered off for an ex-
tended period, however, its most recent row in LittleTable
may be arbitrarily far in the past. In such cases, Events-
Grabber fetches from the device without providing any pre-
vious event id, and the device responds with the oldest event
it has stored. Using that event’s timestamp to bound how far
back in time to search, EventsGrabber then queries Little-
Table to find the latest row for that network and device.

As we note in Section 3.4.5, such queries are not partic-
ularly efficient for LittleTable to execute. In addition to
adding Bloom filters as described in that section, another
way to improve applications like EventsGrabber is to regu-
larly insert for each device a sentinel value that contains the
latest event id inserted for that device. So long as the rate
of inserting sentinel values is a small fraction of the rate of

real events, this approach costs little, and it allows an appli-
cation to query no further back in time after a restart than
a single sentinel period.

As with UsageGrabber, we note that the rows Events-
Grabber inserts into LittleTable cluster by timestamp and
key and are append-only, single-writer, and recoverable.

4.3 Video Motion Search
Video motion search is one of our newest LittleTable ap-

plications. Although it is far from the type of application
we had in mind when designing LittleTable, it shares a sur-
prising amount of functionality with event logs. We briefly
present it here to demonstrate the diverse range of applica-
tions for which LittleTable is appropriate.

Unlike most security cameras, Meraki’s cameras store the
video they record in flash inside the cameras themselves. A
web browser on the same network subnet as the camera can
stream live video feeds and historical footage directly from
the camera, and Dashboard proxies video for any browser
without a local route. When a security incident occurs, a
Dashboard user can select any rectangular area of interest
in a camera’s video frame and search backwards in time for
motion events within that area. Dashboard also uses these
motion events to draw heatmaps of motion over time.

To implement these features, a background process on
each camera processes each video frame and encodes mo-
tion events as follows. It divides each 960 × 540 frame into
60× 34 coarse cells, each of which contains six columns and
four rows of 16 × 16 pixel macroblocks. When a coarse cell
changes between frames, the process creates a motion event
and encodes it as a single 32–bit word: a nibble each for the
row and column of the coarse cell within the frame, and a bit
each to indicate the presence or absence of motion in the 24
macroblocks. If a coarse cell contains motion in successive
frames, the process coalesces those events, OR’ing together
their bit vectors to create a single event and duration.

A daemon process in Dashboard, called MotionGrabber,
fetches these motion events from the device similarly to how
EventsGrabber fetches other events. It stores each bit vec-
tor and duration in LittleTable keyed on the camera’s iden-
tifier. Over a recent week, MotionGrabber stored an av-
erage of 51,000 rows/camera system-wide. Again assum-
ing a query throughput of 500,000 rows/second, searching
a week’s worth of video on a single camera takes approxi-
mately 100 ms.

5. EVALUATION
In this section, we analyze LittleTable’s performance via

microbenchmarks and present measurements of our produc-
tion deployment.

5.1 Microbenchmarks
We first present microbenchmarks to quantify LittleTable’s

performance and validate its design.

5.1.1 Experimental Setup and Procedure
We ran our microbenchmarks on a machine with two In-

tel Xeon E5-2630 v2 6-core processors, 64 GB of 1600 MHz
DDR3 RAM, and a software RAID 1 array of two SATA
Western Digital WD2000FYYZ 2 TB, 7,200 RPM hard drives
with 64 MB of cache per drive. The drives have a single ext4
partition. To measure performance using only a single spin-
dle, we mark one drive in the RAID array as faulty. The
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Figure 2: Insert throughput vs. row and batch
size. The solid line shows insert throughput with 128-byte
rows and varying batch size. The dashed line shows insert
throughput in 64 kB batches and varying row size.

machines run Linux kernel version 3.16.0 using the default
file system readahead of 128 kB unless otherwise noted.

Before each benchmark we sync all writes, clear Linux’s
disk cache and the drive’s internal cache, and write and read
64 MB of data to a random location on disk. Except for the
multiple writer benchmark in Section 5.1.4, our benchmarks
are single-threaded. We use nice and ionice to increase
the CPU and I/O priority of our benchmark processes to
the highest priority. We run each benchmark on each set of
parameters 26 times, and we plot the average of the y-axis
metric with a 95% confidence interval, computed using the
Student’s t-distribution.

We tested the sequential performance of our disks using
dd, clearing the cache beforehand and syncing the filesystem
afterwards, and observed approximately 120 MB/s read and
write throughput. We measured an average combined seek
and rotational latency of 8 ms when reading random 512-
byte blocks from the area of disk used for our benchmarks.

Our insert benchmarks insert rows with timestamps set to
the current time to emulate how Dashboard generally uses
LittleTable. The benchmarks generate all other input data
using a xorshift pseudorandom number generator, effectively
disabling LittleTable’s LZO compression.

5.1.2 Single Writer Throughput
We evaluate the performance of LittleTable with a sin-

gle client inserting 500 MB of data into a single table in
two experiments. In our first experiment, we explore what
effect the number of rows in a single command has on in-
sert throughput. In this experiment, each row is made up
of 32-bit integers and is 128 bytes long. The solid line in
Figure 2 shows that write throughput increases with larger
batch sizes as the relative fraction of per-command overhead
and round-trip time decreases.

In our next experiment, we fix the batch size at 64 kB
and vary the size of the rows from 32 bytes to 64 kB by
varying the size of a single blob value column. We fix the
number of key columns to six to keep the amount of work
for performing key comparisons constant. The dashed line
in Figure 2 shows the results of running this microbench-
mark. In this test, LittleTable achieves an insert through-
put anywhere from 12% (with 32-byte rows) to 63% (with
4 kB) of peak disk throughput. Overall, LittleTable’s insert
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Figure 3: Insert throughput with active tablet merg-
ing. Merge events are shown as impulses along the x-axis.

throughput steadily improves with increasing row sizes, as
the relative cost of per-row operations decreases.

5.1.3 Insert Throughput and the Impact of Merging
Since log compaction has been shown to be a significant

cost in other log-structured storage systems [23], in this ex-
periment we investigate the cost of merging tablets during
inserts into LittleTable. To clearly illustrate the effects of
merging, we maximize initial throughput by inserting 4 kB
rows in 64 kB batches into a single table, and we limit the
memory used by LittleTable so that at any time there are at
most 100 outstanding tablets waiting to be flushed to disk.
LittleTable flushes tablets at 16 MB and limits merged tab-
let sizes to 128 MB, its default settings for those parameters.

Figure 3 shows the result of this benchmark. We insert
16 GB of data over 350 seconds and measure the average
insert throughput over 5-second windows. LittleTable is
CPU-limited and achieves very high throughput until it hits
the 100-tablet limit, after which it becomes disk-bound, and
throughput levels off around 70 MB/s.

To maximize the number of tablets available to any one
merge, LittleTable waits until 90 seconds after a tablet is
written before merging it. Consequently, the merge thread
becomes active at 90 seconds into this test. (We indicate
individual merge events as impulses along the x-axis.)

Once merging begins, insert throughput drops as flushes
compete with merges for disk bandwidth. This competition
slows inserts down, leaving less data to merge. Eventually
the rate of merges decreases, allowing the insert rate to climb
again. Near the end of the test these two processes reach
more of an equilibrium, at which point insert throughput
vacillates between 30-40 MB/s.

Given the high insertion rate in this test, the merge thread
always has eight tablets available to merge, and each itera-
tion writes out a 128 MB tablet that is never merged again.
We thus observe a write amplification factor of 2, and the fi-
nal throughput is half the initial disk-bound value. At lower
insertion rates LittleTable suffers higher write amplification,
but the effects of merging are less obvious, as the disk more
easily keeps up with the lower aggregate write rate.

5.1.4 Multiple Writer Throughput
LittleTable’s insert performance is CPU-bound for smaller

batch sizes. Because the server shares almost no state be-
tween tables, we thus expect insert performance to increase
with multiple processes writing to different tables. This sit-
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Figure 4: Insert throughput vs. number of writers.

uation more closely matches Dashboard itself, where many
separate processes each write to their own table.

In this benchmark, each writer writes 500 MB to a sepa-
rate table. Each insert is a batch of 32 128-byte rows. We
compute the aggregate insert throughput by dividing the to-
tal amount of data written by the total time for all requests
to finish. Figure 4 shows the results of this microbenchmark.
With a single writer, LittleTable sustains 37 MB/s, and each
additional writer increases the aggregate throughput. With
32 writers, LittleTable sustains almost 75% of the peak disk
write throughput.

5.1.5 Query Throughput
LittleTable’s read throughput is relatively independent of

both row size and number of readers. In contrast, as Fig-
ure 5 shows, it is much more sensitive to the number of
tablets LittleTable is simultaneously reading from, as the
disk arm must seek back and forth between tablets. This
effect is the motivation behind merging tablets as discussed
in Section 3.4.1.

In this experiment, we fix the table’s total size to 2 GB and
each row to 128 bytes while varying the number of tablets.
A single reader queries the entire table. We first run this ex-
periment with the default file system readahead of 128 kB,
which takes 1 ms to read at the disk’s sequential throughput
of 120 MB/s. With a sufficiently large number of tablets, it
becomes increasingly certain that the disk arm must move
to read the next 128 kB for a given tablet. The combined
seek and rotational latency is approximately 8 ms, so in the
limit the disk should spend only 1/9 of its time reading, for
an expected throughput of 12-13 MB/s including LittleTable
overheads. We suspect that LittleTable’s performance levels
off somewhat higher, at 24 MB/s, because the disk’s internal
64 MB cache is providing additional readahead. When we re-
run the experiment with a larger readahead of 1 MB, Little-
Table’s performance levels off at around 40 MB/s, which is
much closer to what we would expect.

5.1.6 Query First-Row Latency
The latency to retrieve the first row from a query in Little-

Table is dominated by the time to read the relevant block
from each tablet that overlaps the query’s time range. As
discussed in Section 3.5, we expect LittleTable to read a
tablet’s footer in three seeks. Once the footer is cached, we
expect it to take only one additional seek to read any block
in the tablet.

To confirm this expectation we perform queries for ran-
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Figure 5: Query throughput vs. number of tablets.
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Figure 6: First-row latency vs. number of tablets.

dom keys in a table with 128-byte rows and 16 MB tab-
lets. We vary the number of disk tablets from 1 to 32 by
adjusting the query’s timestamp bounds. We perform two
queries, each to a different random key, and we clear all
system caches and the buffer cache before each pair. The
first query reads the tablet’s footer and a single block. The
second query reads a different block (in expectation).

Figure 6 shows a linear regression on both first query and
second query performance versus the number of tablets. The
slopes of the two lines are 30.3 ms and 8.3 ms per tablet,
very close to the 4 and 1 seek times we expect in each case.

5.2 Production Metrics
In this section, we present measurements of our produc-

tion PostgreSQL and LittleTable deployments.

5.2.1 Database Sizes
As discussed in Section 2.1, Dashboard horizontally par-

titions customers across shards. Meraki’s operation team
generally splits a shard when its PostgreSQL database size
exceeds its available RAM, as in our usage PostgreSQL per-
forms poorly otherwise. They also split a shard when its
LittleTable data begins to fill its disks. As a result, Dash-
board stores approximately 20 times more data in Little-
Table than in PostgreSQL, roughly corresponding to the ra-
tio of disk to main memory on our servers.

Because Dashboard is composed of multiple generations
of server hardware, we visualize the range of PostgreSQL
and LittleTable sizes across our production shards as a cu-
mulative distribution function (CDF) in Figure 7. As of
January 4, 2017, Dashboard stores a total of 320 TB in
LittleTable, with the largest instance storing 6.7 TB. In com-
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Table sizes in production.
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table in production.

parison, Dashboard stores only 14 TB in PostgreSQL, with
the largest shard storing 341 GB.

5.2.2 Table, Key, and Value Sizes in LittleTable
The features for which Dashboard uses LittleTable vary

widely in their storage needs. As of January 4, 2017, Dash-
board has approximately 270 LittleTable tables on each pro-
duction shard. The median table size is about 875 MB com-
pressed, and the largest table in LittleTable, at 704 GB com-
pressed, far exceeds any shard’s entire PostgreSQL database.

Figure 8 shows a CDF of the key and value size per ta-
ble across all tables. Overall, tables have small keys: the
median key size is only 45 bytes and all keys are less than
128 bytes. Most values are small as well: the median value
is only 61 bytes, and 91% of LittleTable tables have an av-
erage value size of 1 kB or less. The largest values store
large, probabilistic representations of sets of clients, how-
ever, and those have values as large as 75 kB. The average
row is 791 bytes, large enough to write at 72 MB/s according
to the microbenchmark results shown in Figure 2.

5.2.3 Long-Term Insert and Query Rates
The microbenchmarks in Section 5.1 show the peak read

and write throughput LittleTable can sustain. On account of
diurnal usage patterns, relatively idle weekends, and inten-
tionally over-provisioning our production system, we observe
much lower average rates in production. Between October
10, 2016, and January 7, 2017, LittleTable accepted an aver-
age of 14,000 rows/second per shard in inserts and returned
an average of 143,000 rows/second per shard to queries. The
workload is read-heavy in part due to aggregation: multiple
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turned by table in production.
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Figure 10: Distributions of row TTL by table and
lookback period by query in production.

aggregators (see Section 4.1.2) read each source table and
write substantially smaller destination tables.

5.2.4 Query and Insert Efficiency
As discussed in Section 3.2, because LittleTable clusters

rows by timestamp but sorts rows within a cluster by pri-
mary key, a query may scan through many rows that lie
within its key bounds but fall outside of its timestamp bounds.
Figure 9 shows a CDF of the average ratio per table of rows
scanned versus rows returned across all queries processed by
LittleTable in a day. On average, queries are very efficient,
scanning only 1.4 rows for every row they return, and 80% of
tables see a ratio of 3.3 or less. A small minority of queries,
however, are from applications looking for the latest value
for a prefix of the primary key. As described in Section 3.4.5,
unless a query specifies every column in the primary key ex-
cept the timestamp, LittleTable must scan through many
rows with the given prefix to find the latest one, since rows
are sorted within tablets by primary key, and the timestamp
is the last of the primary key columns. As in any system,
it is possible to carelessly construct queries that are not op-
timized for LittleTable’s strengths, and we are not always
diligent about tracking them down and correcting them.

The number of rows per insert likewise varies widely by
application. Half of our tables see an average batch size of
128 rows or more, and the top 20% see batches of over 6,000
rows, but the bottom 20% insert only a single row at a time.

5.2.5 The Importance of Clustering
As discussed in Section 2.3.3, customers have a nearly

insatiable demand for high-resolution historical data, even
though they mostly query data from the recent past. By
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clustering data by timestamp, LittleTable co-locates recent
data, increasing the odds that it can satisfy most queries
from the system page cache. By simultaneously clustering
data by customer, network, or device, LittleTable ensures
that it can satisfy queries for older, less-frequently queried
data with mostly sequential disk reads.

Figure 10 quantifies the importance of such clustering.
The upper, solid line in the figure shows a cumulative dis-
tribution of the oldest times requested by queries to a rep-
resentative page in Dashboard over the six months ending
with December, 2016. The lower, dashed line in the figure
shows the distribution of TTLs across all tables in produc-
tion use. While over 90% of requests are for data from the
most recent week, Dashboard is able to retain data in most
tables for a year or longer, removing old rows only when lim-
ited by the available disk space. Together, these two lines
illustrate the importance of and the opportunity created by
clustering time-series data in both dimensions.

6. RELATED WORK
Like a number of recent storage systems, LittleTable’s

design was inspired by the log-structured merge tree [19],
which itself was inspired by LFS [21]. Other log-structured
storage systems include Bigtable [8], bLSM [22], Cassan-
dra [14], Diff-Index [24], HBase [5], LevelDB [1], LHAM [18],
LogBase [25], Megastore [6], the PE file [12], Spanner [9],
and TileDB [20]. Recent versions of both MongoDB [26]
and MySQL [17] also include log-structured storage man-
agers. These systems vary in whether they are centralized
or distributed, whether they are run as a separate server
process or linked into client processes as a library, whether
their data model is relational or semi-structured, whether
they vertically partition data by column, whether they con-
tain a separate write-ahead log for recovery, and whether
they support secondary indexes.

LittleTable is a relational database, run as a separate
server process. By popular demand, its interface is SQL.
LittleTable itself is not a distributed database; instead, we
shard Dashboard at the application layer. Because data re-
cently inserted into LittleTable can be recovered from the
devices from which Dashboard originally gathered it, Little-
Table does not use a separate write-ahead log, and it flushes
data infrequently, thereby trading reduced durability for less
disk write load. LittleTable does not support secondary in-
dexes; to efficiently lookup data by multiple columns, Dash-
board stores it more than once. Finally, as Dashboard gen-
erally accesses most columns of each row together, there is
little motivation for LittleTable to vertically partition data.

LittleTable differs from most other log-structured systems
in that it explicitly clusters data into two dimensions by par-
titioning data into tablets by timestamp and sorting data
within each partition by primary key. While other systems’
merge policies aim to combine as many tablets as possible,
LittleTable groups tablets into time periods that are larger
the further they are in the past, and LittleTable’s merge
policy explicitly avoids merging together tablets from differ-
ent time periods in order to maintain a clustering by time.
Recent versions of Cassandra include a similar policy [11].
LittleTable also uses a novel merge policy within time pe-
riods that maintains the logarithmic scaling of prior work
while only merging tablets whose timespans are adjacent.
In this way it maintains a clustering of data by timestamp
even within a period.

An alternate approach to clustering data in more than one
dimension is taken by TileDB, a log-structured array storage
manager for scientific data. TileDB allows applications to
control how data is grouped on disk in each dimension, how
it is ordered within each group, and how groups are ordered
relative to each other on disk. We believe this approach
could be used to emulate LittleTable’s clustering strategy
except that the time periods covered by each group would
not change size depending on how far in the past they were.

A number of indexing schemes for multiversion databases
also partition data by both primary key and timestamp,
including the Time-Split B-tree [15, 16] and the MD/OD
R-tree [13]. Unlike LittleTable and other log-structured sys-
tems, however, these schemes do not take advantage of long
sequential writes to maximize insert throughput.

LHAM [18] introduced the idea of moving older data in a
log-structured system to write-once media. This approach
is especially attractive for time-series data, where very old
values are accessed infrequently but remain valuable, and we
are considering using Amazon S3 or another cloud service as
an additional backing store for old LittleTable data.

7. CONCLUSION
At the time we designed and built LittleTable, Meraki was

a startup with only 13 software engineers, and LittleTable’s
design was thus heavily optimized for ease of implementa-
tion. Although we have occasionally made small enhance-
ments, and we are currently investigating a bulk delete fea-
ture to simplify compliance with regional privacy laws, the
same basic design continues to meet Dashboard’s evolving
time-series storage needs nine years later.

LittleTable’s design succeeds primarily because it clusters
data in two dimensions. By clustering rows by timestamp,
LittleTable allows Dashboard to quickly display recent mea-
surements without any penalty for retaining older history.
Developers use this older data to allow infrequent searches
further into the past or to re-aggregate old measurements
and reveal new patterns. By further clustering each table
by a developer-chosen key, LittleTable allows developers to
optimize a table for the specific features they intend to build
on top of it. High-quality features take time to code, from
the firmware on devices to the JavaScript in the browser. A
little thought about storage layout up front is a relatively
small cost to pay for snappy performance down the line.

Central to both LittleTable’s implementation simplicity
and its high performance are the weaker consistency and
durability guarantees it provides. These weaker semantics
certainly present occasional challenges for developers, al-
though we frequently find ad hoc solutions to common dif-
ficulties, such as the new flush command proposed in Sec-
tion 4.1.2. Developing a more general, yet still performant,
system with strong semantics would be a fruitful direction
for future research.
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APPENDIX
As discussed in Section 3.4.1, LittleTable prevents inefficient
merging with a simple algorithm. In this appendix we for-
malize that algorithm and prove its efficiency.

Let ti be the tablets in a table, |ti| be the size of tablet ti
in bytes, and T be the size of the table. We number tablets
such that for all i, the minimum timestamp in ti is at most
the minimum timestamp in ti+1. In every iteration of the
merge algorithm, LittleTable finds a consecutive sequence of
merge candidates—consisting of the first two tablets ti, ti+1

in the sequence such that |ti| ≤ 2|ti+1|—and merges those
tablets together. LittleTable repeats this process until there
are no more tablets to merge.

Our first claim is that this algorithm results in a final
number of tablets that is logarithmic in T . The proof is
straightforward: if t1, . . . , tn represent the final set of tablets
after merging is over, there is nothing to merge if and only
if |t1| > 2|t2| > 4|t3| > ... > 2n−1|tn|. Because the size of
the table is equal to the size of the tablets, we have

T = |t1|+ . . . + |tn|
> 2n−1|tn|+ 2n−2|tn|+ . . . + 2|tn|+ |tn|
≥ 2n − 1

It follows then that n = O(log T ).
Our second claim is that the number of times any one

row is merged is at most logarithmic in T . Let m be the
maximum number of times any particular tablet is merged
during the merge algorithm, and consider any row in any
tablet, before any merging has occurred, that is merged m
times by the merge algorithm. In any given iteration of the
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merge algorithm, there are two cases in which a tablet tm
containing the aforementioned row is merged:

• tm is the first tablet (i.e., the one with the smallest
index) in the sequence of merge candidates. This sit-
uation occurs either if tm is larger than tm+1 but not
double tm+1’s size:

|tm+1| ≤ |tm| ≤ 2|tm+1|

or tm is smaller than tm+1:

|tm| ≤ |tm+1|

In either case, the merged tablet is at least 3/2 the size
of tm. It follows that this type of merge can only occur
O(log T ) times to tm.

• tm is not the first tablet in the sequence of merge can-
didates. Consider the first tablet t` in the sequence of
merge candidates. If ` = 1, then tm will become part
of the first tablet after this merge, and this type of
merge will never happen again. Otherwise, if ` ≥ 2, all
tablets before t` cannot be eligible to be merged, i.e.,
|ti| > 2|ti+1| for all i ≤ ` − 1. As in the first claim,
there can only be O(log T ) such tablets to the left of t`;
therefore, this type of merge can only occur O(log T )
times to tm.

Note that, while the described merge policy only consid-
ers and merges the first two tablets ti, ti+1 that satisfy
|ti| ≤ 2|ti+1|, the logarithmic bounds and proof continue
to hold even if LittleTable merges any number of tablets
that immediately follow ti+1, regardless of their sizes.
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